<Original Article>

Population genetic structure of mitochondrial DNA in **Branchiostoma** species

Yuzo Takada^{1), 2)} and Toshio Imai¹⁾

Summary The *Branchiostoma* are thought to exhibit characteristics of their vertebrate ancestors of the vertebrates and are therefore important organisms in the research fields of phylogenetics, evolutionary biology, and phylogenetic systematics. With the aim of elucidating in detail the process of the evolution of *Branchiostoma*, we determined and compared the entire sequences of mitochondrial DNAs (mtDNAs) obtained from multiple individuals of Branchiostoma belcheri (B. belcheri; a Pacific lancelet), Branchiostoma lanceolatum (B. lanceolatum; an Atlantic lancelet), and Branchiostoma floridae (B. floridae; an Atlantic lancelet), which have frequently been used for research. Results have revealed substantial inter-species diversity in mtDNAs of these Branchiostoma. Some individuals of B. floridae had an NADH1 whose initiation codon (ATA) included a base substitution that failed to function as an initiation codon, providing a reason for our selection of the GTG codon, which is located before ATA and is therefore well-conserved among species as the initiation codon for this species.

Key words: Branchiostoma belcheri, Branchiostoma lanceolatum, Branchiostoma floridae, Mitochondrial DNA. Initiation codon

1. Introduction

The Branchiostoma, which are classified under the phylum Chordata, subphylum Cephalochordata, exhibit the following characteristics. They are about 30-50 mm long and have a fish-like appearance. They have no head, and instead show a well-developed oral tegmentum covering the feeding organ in the anteroventral region. They obtain oxygen from water via a branchial cleft located in the anterior half of the body that is used for filtering food. They have a

¹⁾Laboratory of Physiological Chemistry, Department of Corresponding author: Yuzo Takada Biology, Faculty of Science, Toho University, Funabashi 274-8510, Japan Medical College ²⁾Department of Forensic Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan

closed blood-vascular system without a heart and a photoreceptive organ but no organs equivalent to an eye. Although organs corresponding to the back and abdominal fins are not apparent, they swim well with a well-developed organ equivalent to a tail fin. They retain a rod-like notochord consisting of muscle tissue and running from the head to tail throughout life. Although, they have a nerve cord along the notochord, they lack neural ganglia or a brain. They possess simplified, vertebrate-like structures, such as muscle and neural tissue. Based on these characteristics, the

Department of Forensic Medicine, National Defense Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan Received for Publication December 12, 2008 Accepted for Publication January 15, 2009

Branchiostoma are believed to resemble their vertebrate ancestors¹⁾. Branchiostoma were first examined by P.S. Pallas in 1774²⁾ and have been very important organisms for exploring the ancestry and evolution of the vertebrates. Findings from both classic zoological studies as well as from recent genetic analyses suggest that Branchiostoma are closer to vertebrates than to ascidians^{3, 4)}. With this background, a genomesequencing project for Branchiostoma as a laboratory animal was launched in 2005. Sequencing was completed in 2007 (http://genome.jgi-psf.org/ Brafl1/Brafl1.home.html), and the sequence has been published⁵⁾. Meanwhile, the sequences of mitochondrial DNA (mtDNA) have been determined for Branchiostoma belcheri (B. belcheri)⁶, Branchiostoma lanceolatum (B. lanceolatum)⁷⁾, and Branchiostoma floridae (B. floridae)⁸⁾. In this study, with the aim of elucidating in detail the process of the evolution of Branchiostoma, we analyzed the sequences of mtDNAs obtained from multiple individuals of the above three species that have been studied by many investigators worldwide.

2. Materials and methods

1. Samples

Ten individuals of *B. belcheri* (T01-10), a Pacific species, were collected in waters close to Japan. Ten individuals of *B. lanceolatum* (M01-10), an Atlantic species, collected in Argeles-sur-Mer on the Mediterranean coast of France, were kindly provided by Dr. Michael Schubert from Institut de Génomique Fonctionnelle de Lyon (IGFL). Twenty individuals of *B. floridae* collected in Tampa Bay, Florida, in the USA were kindly provided by Dr. Michael Schubert from IGFL (M01-10) and Dr. Linda Holland from the Scripps Institution of Oceanography University of California-San Diego (H01-10).

2. DNA preparation, PCR amplification, sequencing, and data analysis

DNAs were obtained by crushing of *Branchiostoma* samples with a multi-bead shocker (YASUI KIKAI, Osaka, JPN), followed by purification with the DNeasy Tissue Kit (QIAGEN, Hilden,

GER). PCR for sequencing mtDNAs was performed using previously-reported oligonucleotide primers for B. belcheri⁶, or primers designed based on the data reported by Nohara et al.9) for B. lanceolatum or data reported by Spruyt et al.7) for B. floridae. A PCR mixture was prepared by adding 5 ng of a DNA sample, 400 nM of a primer set, and an appropriate amount of sterile distilled water to $10 \,\mu$ l of GeneAmp[®] Fast PCR Master Mix (2x) (Applied Biosystems, CA, USA) to produce a total volume of $20 \,\mu$ l. PCR was performed with an Applied Biosystems 9800 Fast PCR Thermal Cycler (Applied Biosystems) under the following conditions: preincubation at 95°C for 20 seconds, thermal denaturation at 95°C for 3 seconds, and 40 cycles of annealing and extension at 60° C for 30 seconds. The PCR segments obtained were subjected to a sequencing reaction using the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), followed by electrophoresis with an Applied Biosystems 3130xl Genetic Analyzer. The detection of electrophoretic patterns and an analysis of nucleotide sequences were performed using Sequencing Analysis Software v5.2 (Applied Biosystems). The entire sequence of the mtDNA was determined using GENETYX-MAC/ATSQ ver.4.0 Software (GENETYX, Tokyo, JPN). Nucleotide sequences were translated into amino acid sequences using EMBOOS Transeq (http://www.ebi.ac.uk/ Tools/emboss/transeq/index. html) provided by EMB-EBI. The structures of transferRNA (tRNA) genes were analyzed using tRNAscan-SE 1.21 (http://lowelab. ucsc.edu/tRNAscan-SE/) provided by Todd M. Lowe¹⁰⁾. Multiple sequence alignment analysis was performed using a CLUSTAL-W program (http://www.ddbj.nig.ac.jp/Welcome-j.html) provided by the DNA Data Bank of Japan (DDBJ)¹¹⁻¹³⁾. A molecular evolutionary tree was created using the NJplot (http://pbil.univ-lyon1.fr/software/njplot. html)¹⁴⁾, with the mtDNA sequence of Lampetra fluviatilis (Lam: Y18683)¹⁵⁾ as an outgroup.

3. Results

1. Mitochondrial DNA size

The sizes of mtDNAs analyzed were as follows:

Table 1 Localization of mtDNA genes and non-coding regions of Branchiostoma belcheri, Branchiostoma lanceolatum and

Branchiostoma floridae

ranchiostoma bel	ma per																
from to Size Strand (bp) (aa)	to Size Strand (bp) (aa)	Size Strand (bp) (aa)	(aa) Stranc	Stranc	_	Gene	from	to	Size (bp)	(aa)	Strand	Gene	from	to	(bp)	(33)	Strand
1 1141 1141 380	1141 1141 380	1141 380	380			cytb	1	1143	1143	380		cytb	-	1143	1143	380	
1143 1207 65 L	1207 65 L	65 L	L	-		tRNA-Thr	1144	1208	65		L	tRNA-Thr	1144	1207	64		
1208 1272 65	1272 65	65				IRNA-Pro	1209	1275	67			tRNA-Pro	1208	1273	99		
1273 2119 847	2119 847	847				12S rRNA	1276	2118	843			12S rRNA	1274	2119	846		
2120 2182 63	2182 63	63	-	-		RNA-Phe	2119	2184	99			tRNA-Phe	2120	2185	99		
2186 2257 72 4	2257 72 4	72 4	4	4	-	RNA-Val	2187	2253	67			tRNA-Val	2188	2254	67		
2258 3640 1383 10	3640 1383 10	1383 10	11	2	2	SS rRNA	2254	3629	1376			16S rRNA	2255	3621	1367		
3641 3710 70 tR	3710 70 tR	70 IA	LR.	£,	R	NA-Leu (TTR)	3630	3700	11			tRNA-Leu (TTR)	3622	3692	Ľ		
3711 4655 945 314 NA	4655 945 314 NA	945 314 NA	314 NA	N	N	IHO	3704	4643	940	313		NADHI	3693	4635	940	314	
4656 4718 63 tRN	4718 63 iRA	63 tRN	(RN	(R)	IR N	IA-Ile	4644	4707	64			tRNA-Ile	4636	4698	63		
4719 4785 67 tRA	4785 67 tRA	67 iRA	(RA)	IRA	IRA.	N-Met	4708	4774	67			tRAN-Met	4699	4765	67		
4786 4853 68 L <i>iRN</i> .	4853 68 L <i>tRN</i> .	68 L <i>iRN</i> .	L (RN)	L IRN	IRN	4-Glm	4774	4842	69		L	tRNA-GIn	4765	4833	69		
4855 5895 1041 346 NAD	5895 1041 346 NAD	1041 346 NAD	346 NAD	NAD	NAD	CH1	4844	5884	1041	346		NADH2	4835	5875	1041	346	
5888 5959 72 L tRN	5959 72 L IRN	72 L IRN	L (RN)	L IRN	IRN	4-Asn	5877	5943	67		ľ	tRNA-Asn	5868	5937	20		
5960 6026 67 tRN/	6026 67 tRN/	67 tRN	tRN,	tRN.	tRN/	4-Trp	5943	6008	99			tRNA-Trp	5937	6005	69		
6025 6087 63 L tRAN	6087 63 L RAN	63 L (RAI)	L (RA)	L RAN	IRAN	V-Ala	6008	6909	62		L	tRAN-Ala	6004	9909	63		
6088 6146 59 L tRNA	6146 59 L tRNA	59 L IRNA	L IRNA	L IRNA	tR NA	-Cys	6070	6128	59		L	IRNA-Cys	6067	6124	58		
6147 6211 65 L tRNA	6211 65 L tRNA	65 L (RNA	L IRNA	L tRNA	tRNA	-Tyr	6129	6194	99		L	tRNA-Tyr	6125	6190	99		
6216 7763 1548 515 COI	7763 1548 515 COI	1548 515 COI	515 COI	COI	COI		6205	7752	1548	515		COI	6201	7748	1548	515	
7761 7831 71 L (RNA-	7831 71 L (RNA-	71 L IRNA-	L IRNA-	L RNA-	tRNA-	Ser (TCN)	7750	7820	11		ſ	IRNA-Ser (TCN)	7746	7816	70		
7840 7902 63 IRNA	7902 63 IRNA	63 IRNA	IRNA	IRNA	tR NA	-Asp	7828	7893	99			tRNA-Asp	7825	1889	65		
7906 8596 691 230 COII	8596 691 230 COL	691 230 COL	230 COI	COL	COL		7894	8584	169	230		COIL	1890	8280	169	230	
8597 8661 65 IRN.	8661 65 rRN.	65 IRN.	IRN	IRN	IRN	4-Lys	8585	8650	99			tRNA-Lys	8581	8646	99		
8662 8826 165 54 ATF	8826 165 54 ATF	165 54 ATP	54 ATP	ATF	ATF	80	8651	8815	165	\$		ATP8	8647	8811	165	2	
8820 9502 683 227 ATP	9502 683 227 ATP	683 227 ATP	227 ATP	ATP	ATP	~	8809	9491	683	227		ATP6	8805	9487	683	227	
9503 10291 789 262 COI	10291 789 262 COI	789 262 COI	262 COI	COI	CO		9492	10280	789	262		COIII	9488	10276	788	262	
10292 10645 354 117 NAI	10645 354 117 NAI	354 117 NAI	117 NAI	IN	NAI	DH3	10281	10634	354	117		NADH3	10277	16028	352	117	
10646 10707 62 tRN	10707 62 tRN	62 tRN	IRN	IRN	R ^N	A-Arg	10635	10697	63			tRNA-Arg	10629	10695	67		
10711 10986 276 91 NA	10986 276 91 NA	276 91 NA	91 NA	NA	NA	DH4L	10700	10974	275	16		NADH4L	10698	10972	275	16	
10988 12346 1359 452 NA	12346 1359 452 NA	1359 452 NA	452 NA	N	N	DH4	10975	12332	1358	452		NADH4	10973	12330	1358	452	
12347 12413 67 tRN	12413 67 tRN	67 tRN	1RN	IRN	ER.	A-His	12333	12397	65			tRNA-His	12331	12396	99		
12414 12480 67 tRN	12480 67 rR/	67 tRN	(RN	tR N	IR.	(A-Ser (AGY)	12398	12464	67			tRNA-Ser (AGY)	12397	12462	99		
12481 12546 66 fR	12546 66 tR	66 tR	R.	R	R	VA-Leu (CTN)	12465	12532	68			tRNA-Leu (CTN)	12463	12530	89		
12547 14343 1797 598 A	14343 1797 598 A	1797 598 A	S98 A	~	<	ADHS	12533	14329	1797	598		NADHS	12531	14327	1797	598	
14344 14453 110	14453 110	110			-	NC sequence	14330	14519	190			NC sequence	14328	14456	129		
14454 14520 67	14520 67	67			-	RNA-Gly	14520	14586	67			tRNA-Gly	14457	14524	89		
14502 15005 504 167 L A	15005 504 167 L A	504 167 L A	167 L A	L A	<	9HDH6	14569	15071	503	167	L	NADH6	14506	15009	504	167	
15007 15074 68 L rR	15074 68 L IN	68 L IR	L	L IR	(R)	VA-Glu	15073	15138	99		-	tRNA-Glu	15011	15075	65		. 1

15,075 base pairs (bp) for *B. belcheri*, 15,139-15,141 bp for *B. lanceolatum*, and 15,075-15,077 bp for *B. floridae*. The mtDNAs of *Branchiostoma* species are the shortest among mtDNAs of the deuterostomes analyzed thus far. Nevertheless, the mtDNAs of *Branchiostoma* species contain as many genes as those of other larger genomes (13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, and 22 tRNA genes) (Table 1).

The mean frequencies of each base in mtDNA were as follows: 26.8% for adenine (A), 15.4% for cytosine (C), 21.5% for guanine (G), and 36.2% for thymine (T), with purine bases accounting for 48.3% and pyrimidine bases for 51.7%. With respect to base frequency, no difference was observed within each species of *B. belcheri*, *B. lanceolatum*, and *B. floridae*, while a maximum 3.5% difference was observed inter-species. The mean GC content was 37.0%, with no intra-species differences (Table 2).

2. Protein-coding genes

With regard to the size of protein-coding genes, the number of bases in the *NADH1* differed between species, 945 bp for *B. belcheri*, 940 bp for *B. lanceolatum*, and 943 bp for *B. floridae*. The difference in the number of bases was reflected in a difference in the number of amino acids, 314 amino acids (aa) for *B. belcheri* and *B. floridae* and 313 aa for *B. lanceolatum*, with 1 aa shorter in *B. lanceolatum* than in the other two. The sizes of other genes were the same among all *Branchiostoma* species tested (Table 1).

Eleven of 13 protein-coding genes of *B. belcheri* and *B. floridae* and 12 of 13 protein-coding genes of *B. lanceolatum* have an ATG initiation codon. Termination codons are divided into a complete codon consisting of TAG or TAA and an incomplete codon ending with T or TA. Among the protein-coding genes of B. belcheri, the *COI*, *NADH1*, *NADH2*, *NADH4*, *NADH6*, and *ATP8* have a complete termination codon of TAG, while the *COIII*, *NADH3*, *NADH4L*, and *NADH5* have a complete termination codon of TAA, with other genes ending in an incomplete termination codon of T or TA. With regard to *B. lanceolatum*, the *COI*, *cytb*, *NADH2*, *NADH3* and ATP8 have a complete termination codon of TAG, while the COIII and NADH5 have a complete termination codon of TAA, with other genes ending with an incomplete termination codon of T or TA. In the case of B. floridae, the COI, cytb, NADH2, NADH5, NADH6, and ATP8 have a complete termination codon of TAG, while the COIII has a complete termination codon of TAA, with other genes ending in an incomplete termination codon of T or TA (Table 3).

The mean frequencies of amino acids in proteincoding genes were as follows: 7.7% for glycine (G), 7.3% for alanine (A), 9.2% for valine (V), 16.4% for leucine (L), 6.1% for isoleucine (I), 5.3% for methionine (M), 6.9% for phenylalanine (F), 2.9% for tryptophan (W), 4.2% for proline (P), 7.7% for serine (S), 4.9% for threonine (T), 3.1% for asparagine (N), 2.3% for glutamine (Q), 1.0% for cysteine (C), 2.1% for aspartic acid (D), 2.7% for glutamic acid (E), 1.9% for lysine (K), 2.4% for histidine (H), 2.0% for arginine (R), and 4.0% for tyrosine (Y), with hydrophobic amino acids accounting for 66.0%, neutral amino acids for 19.0%, and hydrophilic amino acids for 15.0% (Table 4). No differences were observed in amino acid frequencies within each species of B. belcheri, B. lanceolatum, or B. floridae, while 0.1-0.7% inter-species differences were observed in frequencies of amino acids other than C, D, and H.

 Table 2
 Percentage base composition of mitochondrial

 DNA in *Branchiostoma* species

Base	Bb	Bl	Bf	Mean
Adenine (A)	27.6	26.0	26.9	26.8
Cytosine (C)	13.9	16.4	15.8	15.4
Guanine (G)	21.4	21.8	21.4	21.5
Thymine (T)	37.1	35.7	35.8	36.2
purine bases	48.9	47.8	48.3	48.3
pyrimidine bases	51.1	52.2	51.7	51.7
AT contents	47.0	61.7	62.7	57.1
GC contents	35.3	38.3	37.3	37.0

Data from: *Bb* (*B. belcheri*, T01-10, AB478559-AB478563), *Bl* (*B. lanceolatum*, M01-10, AB478564-AB478573), *Bf* (*B. floridae*, M01-10 and H01-10, AB478574-AB478593) in this study.

	Bb		Bl		Bf	
Cono	Co	odon	Co	odon	Co	odon
Gene	Initiation	Termination	Initiation	Termination	Initiation	Termination
cytb	ATG	T*	ATG	TAG	ATG	TAG
NADH1	GTG	TAG	ATG	Т*	GTG	T*
NADH2	ATG	TAG	ATG	TAG	ATG	TAG
COI	ATG	TAG	GTG	TAG	GTG	TAG
COII	ATG	Т*	ATG	Т*	ATG	T*
ATP8	ATG	TAG	ATG	TAG	ATG	TAG
ATP6	ATG	TA*	ATG	TA*	ATG	TA*
COIII	ATG	TAA	ATG	ТАА	ATG	TAA
NADH3	ATG	TAA	ATG	TAG	ATG	T*
NADH4L	GTG	TAA	ATG	TA*	ATG	TA*
NADH4	ATG	TAG	ATG	TA*	ATG	TA*
NADH5	ATG	TAA	ATG	TAA	ATG	TAG
NADH6	ATG	TAG	ATG	TA*	ATG	TAG

Table 3 Initiation and termination codons of the protein-coding genes in Branchiostoma species

Abbreviations are the same as in Table 2.

Asterisks indicate no such potential reasonably exists and that the termination codon is incomplete.

3. RNAs

The mean length of tRNA genes among the three *Branchiostoma* species was 66.2 nucleotides (nt), while those of tRNA genes varied among species, 66.0 nt for *B. belcheri*, 66.1 nt for *B. lanceolatum*, and 66.4 nt for *B. floridae*. Among tRNA genes, only the tRNA^M exhibited the same size in all species, while other genes showed 1-5 nt inter-species differences (Table 1).

As for to rRNA genes, the size of the *12S rRNA* was strikingly similar in all *Branchiostoma* species: 847 bp for *B. belcheri*, 843 bp for *B. lanceolatum*, and 846 bp for *B. floridae*, with a mean of 845 bp. The size of the *16S rRNA* also showed inter-species similarities, 1,383 bp for *B. belcheri*, 1,376 bp for *B. lanceolatum*, and 1,367 bp for *B. floridae*, with a mean of 1,375 bp (Table 1).

4. Unassigned DNA

The size of unassigned DNAs was as small as 136-217 nt. In the mtDNA of *B. belcheri*, 110 nt (unassigned DNAs) were present in a single region between the *NADH5* and *tRNA^a*, 8 nt between the *tRNA^{s(TCN)}* and *tRNA^b*, 4 nt between the *tRNA^Y* and *COI*, 3 nt each between the *tRNA^F* and *tRNA^P*, between the *tRNA^D* and *COII*, and between the *tRNA^R* and *NADH4L*, and 1 nt each in 5 other regions. With regard to *B. lanceolatum*, 190 nt were obserred in a

 Table 4
 Percentage amino acid composition of proteincoding genes in Branchiostoma species

-						
	Amin	o acid	Bb	Bl	Bf	Mean
	τ	G	7.8	7.6	7.8	7.7
		Α	7.4	7.4	7.2	7.3
	les	V	8.8	9.5	9.2	9.2
	sidı	L	16.1	16.6	16.5	16.4
	ic re	I	6.5	5.7	6.2	6.1
	hob	Μ	5.5	4.8	5.4	5.3
	lrop	F	6.9	7.0	6.8	6.9
	hyd	W	2.9	2.9	2.8	2.9
		Р	4.1	4.2	4.2	4.2
		total	66.0	65.7	66.1	66.0
		S	7.4	7.9	7.8	7.7
	lues	Т	4.9	5.1	4.7	4.9
	resid	Ν	3.2	3.1	3.0	3.1
	ral 1	Q	2.3	2.2	2.3	2.3
	ieut	С	1.0	1.0	1.0	1.0
	-	total	18.8	19.3	18.8	19.0
		D	2.1	2.1	2.1	2.1
	due	Е	2.6	2.7	2.7	2.7
	resi	К	2.0	1.8	1.9	1.9
	nilic	Н	2.4	2.4	2.4	2.4
	ropł	R	1.9	1.9	2.0	2.0
	hydı	Y	4.1	4.1	3.9	4.0
	_	total	15.1	15.0	15.0	15.0

Abbreviations are the same as in Table 2 and text.

		Bb		Bl		Bf		
Distri	bute	d block	Size (nt)	Sequence	Size (nt)	Sequence	Size (nt)	Sequence
cvtb	_	tRNA-Thr	1	G				
tRNA-Thr	_	tRNA-Pro	-					
tRNA-Pro	_	12S rRNA						
12S rRNA	_	tRNA-Phe						
tRNA-Phe	_	tRNA-Val	3	CTG	2	GA	2	GA
tRNA-Val	_	16S rRNA		010	-	0.1	-	0.1
16S rRNA	_	tRNA-Leu (TTR)						
tRNA-Leu (TTR)	_	NADH1			3	GTG		
NADHI	_	tRNA-IIe						
tRNA-Ile	_	tRAN-Met						
tRAN-Met	_	tRNA-GIn						
tRNA-Gln	_	NADH2	1	Т	1	Т	1	Т
NADH2	_	tRNA-Asn						
tRNA-Asn	_	tRNA-Trp						
tRNA-Trp	_	tRAN-Ala						
tRAN-Ala	_	tRNA-Cvs			÷			
tRNA-Cys	_	tRNA-Tyr						
tRNA-Tyr	-	COI	4	AATT	10	TGAAGAATTT	10	AGGATAGCTT
COI	_	tRNA-Ser (TCN)						
tRNA-Ser (TCN)	-	tRNA-Asp	8	TTTGTTTA	7	TAGATTA	8	TTTAAAYA
tRNA-Asp	_	COII	3	TCG				
COII	-	tRNA-Lys						
tRNA-Lys	-	ATP8						
ATP8	-	ATP6						
ATP6	-	COIII						
COIII	-	NADH3						
NADH3	-	tRNA-Arg						
tRNA-Arg	-	NADH4L	3	GTT	2	GT	2	GT
NADH4L	-	NADH4	1	Α				
NADH4	-	tRNA-His						
tRNA-His	-	tRNA-Ser (AGY)						
tRNA-Ser (AGY)	-	tRNA-Leu (CTN)						
tRNA-Leu (CTN)	_	NADH5						
NADH5	-	tRNA-Gly	110	NC sequence	190	NC sequence	129	NC sequence
tRNA-Gly	-	NADH6						
NADH6	-	tRNA-Glu	1	Т	1	Α	1	Α
tRNA-Glu	-	cytb	1	Т	1	Т	1	Т

Table 5 Lengths and sequences of unassigned DNA in Branchiostoma species

Abbreviations are the same as in Table 2.

single region between the *NADH5* and *tRNA^G*, 10 nt between the *tRNA^Y* and *COI*, 7 nt between the *tRNA^{S(TCN)}* and *tRNA^D*, 3 nt between the *tRNA^{L(TTR)}* and *NADH1*, 2 nt each between the *tRNA^F* and *tRNA^V* and between the *tRNA^R* and *NADH4L*, and 1 nt each in 3 other regions. As for *B. floridae*, 129 nt were found in a single region between the *NADH5* and *tRNA^G*, 10 nt between the *tRNA^Y* and *COI*, 8 nt between the *tRNA^{S(TCN)}* and *tRNA^P*, 2 nt each between the *tRNA^F* and *tRNA^V* and between the *tRNA^R* and *NADH4L*, and 1 nt each in 3 other regions (Table 5).

5. Homology

A homology of protein-coding genes revealed a

94-100% homology within each species of *B. belcheri*, *B. lanceolatum*, and *B. floridae* and a 55-96% interspecies homology. Among protein-coding genes, the *COI*, *COII*, and *COIII* exhibited high degrees of homology (\geq 90%) both within and inter-species. The ATP8 exhibited a high intra-species homology (94-100%) but the lowest inter-species homology (55-68%) (Table 6).

Molecular phylogenic trees created using the NJplot were similar among protein-coding genes, tRNA genes, and rRNA genes. *B. belcheri*, *B. lance-olatum* and *B. floridae* were classified into separate clusters, respectively (Fig. 1).

4. Discussion

1. Base frequency

Base frequency exhibited no significant intraspecies differences but did show significant interspecies differences (P<0.001)¹⁶⁾. A comparison of purine and pyrimidine bases revealed that the latter were predominant, with no intra-species differences, and a maximum of only 1.1% inter-species difference. GC content exhibited no intra-species differences but did show a maximum 3.0% inter-species difference. Differences in basic structural factors, such as GC content and base frequency, are thought to be attributable to differences in mutation pressure¹⁷⁾. Possession of sufficient levels of these basic structural factors is a requirement for the production of a functional protein¹⁸). The differences observed in such factors thus suggest that Branchiostoma species have long been under selective pressure due to differences in habitat.

genes of *Branchiostoma* species were very similar to those of other metazoans. While the numbers of amino acids were the same within each species, the mtDNA of *B. lanceolatum* was 1 aa shorter than those of *B. belcheri* and *B. floridae*. This inter-species difference in the numbers of amino acids was attributable to the *NADH1* of *B. lanceolatum* being 1 aa shorter than that of the other two species. This suggests that, if a reduction in the size of mtDNA is required for a rapid replication of mitochondria, *B. lanceolatum* is under stronger selective pressure to reduce its size than are the other *Branchiostoma* species.

The base frequency exhibited almost no intraspecies variation and no significant differences, while the frequencies of most amino acids differed significantly inter-species (P < 0.001). Inter-species differences were also seen in the distributions of hydrophobic and hydrophilic amino acids, as shown in Table 4. These findings indicate that *B. belcheri*, *B. lanceolatum*, and *B. floridae* differ distinctly from one anather.

2. Protein-coding genes

The sizes and sequences of the protein-coding

The COI, COII, and COIII were best conserved inter-species, with 98-100% intra-species homology

 Table 6
 Percentage of identical base and amino acid sequences for protein-coding genes and rRNA genes in Branchiostoma species

											_
ATP6	Bb	Bl	Bf	cytb	Bb	Bl	Bf	NADH4L	Bb	Bl	
Bb	98-100	85-86	84-87	Bb	99-100	89-90	88-89	Bb	100	82	ĺ
Bl	1.12	99-100	86-88	Bl		99-100	92-93	Bl		100	
Bf			97-100	Bf			98-100	Bf			
ATP8	Bb	Bl	Bf	NADH1	Bb	Bl	Bf	NADH5	Bb	Bl	-
Bb	94-100	66-68	55-59	Bb	99-100	85-87	88-89	Bb	99-100	77-78	
Bl		100	61-62	Bl		99-100	87-88	Bl		99-100	
Bf			96-100	Bf			99-100	Bf			
сог	Bb	Bl	Bf	NADH2	Bb	Bl	Bf	NADH6	Bb	Bl	-
Bb	99-100	96-97	95-97	Bb	98-100	73-74	67-68	Bb	97-100	72-74	Î
B/		99-100	97-98	Bl		99-100	72-73	Bl		98-100	
Bf			98-100	Bf			97-100	Bf			
<i>COII</i>	Bb	Bl	Bf	NADH3	Bb	Bl	Bf	12S rRNA	Bb	Bl	-
Bb	99-100	93	93-94	Bb	99-100	76-77	82-84	Bb	99-100	78-79	Ī
B/		99-100	95-96	Bl		99-100	79-81	Bl		98-100	
Bf			99-100	Bf			98-100	Bf			
COIII	Bb	Bl	Bf-L	NADH4	Bb	Bl	Bf	16S rRNA	Bb	Bl	-
Bb	99-100	95	90-91	Bb	98-100	66-67	72-74	Bb	99	79-80	Ĩ
Bl		99-100	93-94	Bl		99-100	69-70	Bl		99-100	
Bf	7		99-100	Bf			98-100	Bf			

Abbreviations are the same as in Table 2.

Fig. 1 Neighbor-joining analysis of the relationships between representative mitochondrial genes
An analysis based on 41 genotypes was conducted using CLUSTAL-W program (DDBJ). Bootstrap testing was performed (1,000 replicas). Numbers at forks represent bootstrap percentages. Tree is unrooted.
A) Amino acid sequence analysis of 13 protein-coding genes; B) Base sequence analysis of tRNA genes; C) Base sequence analysis of rRNA genes.
Abbreviations are same as in Table 2.

Lam (Lampetra fluviatilis: Y18683) was included as an outgroup.

and 90-98% inter-species homology. The *NADH2*, *NADH4*, and *NADH6* exhibited a 97-100% intraspecies homology, but a low inter-species homology of 66-74%. The *ATP8* also exhibited an intra-species homology of 94-100%, but a very low inter-species homology of 55-68%. These genes thus appear to be more characteristic of inter-species differences than other protein-coding genes. The *ATP8*, which exhibited the greatest variation among *Branchiostoma* species, may thus be a useful marker for distinguishing habitat differences.

3. Initiation and termination codons

The initiation codons for the *NADH1* and *NADH4L* of *B. belcheri* appear to be GTG, since no ATG or other initiation codons in metazoan mitochondria are adjacent to these genes. The apparent initiation codons for the *COI* and *NADH1* of *B. floridae* are GTG and ATA, respectively, while that for the *COI* of *B. lanceolatum* is GTG, since, as in the case of *B.*

belcheri, no ATG or other initiation codons in metazoan mitochondria are adjacent to these genes, and the codons in the initiation codon region are very similar to the amino terminal sequence of the COI in other metazoans. A GTG codon is thought to initiate the transcription of the COI or other genes in mtDNAs of many metazoans¹⁹. Any estimation of the initiation codon for the NADH1 is somewhat unreliable since GTC and ATA, which are frequently-used initiation codons, are located in the estimated initiation codon region of the NADH1. The GTG codon is directly adjacent to the $tRNA^{L(TTR)}$ located upstream and is also next to the subsequent ATA codon. The initiation codon region of the NADH1 of B. lanceolatum is also poorly conserved. Although Delarbre et al.²⁰⁾ have determined that ATA is the initiation codon for the NADH1, the assumption of ATA as the initiation codon for the NADH1 of B. floridae examined in this study resulted in some initiation codons being GTA, a finding that is inconsistent with the currently-

accepted initiation codon for that Branchiostoma . We thus considered it more reasonable to select GTG as the initiation codon, as it is located before the variable region and is therefore well conserved. Furthermore, no ATA but only GTG was found in the initiation codon region of the NADH1 of B. belcheri. We thus determined GTG, which was directly adjacent to the $tRNA^{L(TTR)}$, to be the initiation codon. Although the initiation codon of B. lanceolatum may be estimated to be GTG, based on such factors as the nucleotide sequences and size reduction of other Branchiostoma species, ATG is adopted as the initiation codon for most protein-coding genes of B. lanceolatum. In the NADH1 of B. lanceolatum, GTG is directly followed by ATG, and there currently appears to be no valid reason for replacing ATG with GTC. Consequently, we determined the initiation codon of the NADH1 to be GTG in B. belcheri, and B. floridae and ATG in B. lanceolatum. The initiation codon for the COI was ATG in B. belcheri and B. lanceolatum, and GTG in B. floridae, while that for the NADH4L was GTG in B. belcheri and B. lanceolatum, and ATG in B. floridae.

A complete termination codon of TAG is commonly found in the COI, NADH2, and ATP8, among which the COI and NADH2 do not overlap with downstream genes having the same transcription orientation. The TAG codon in the ATP8 is followed by a well-conserved sequence for amino acids (WPW) at the 3'-terminal end of the ATP8, at which the ATP8 and ATP6 overlap. These genes, which exhibit an overlap in the mtDNA of the chordates, are translated via two cistronic mRNAs in the overlap region²¹⁾. Incomplete termination codons of Branchiostoma can form complete termination codons if their transcriptional products overlap with downstream genes by as little as 1-2 nt. Delarbre et al., who determined the sequence of a cDNA corresponding to the mRNA of the NADH1 of B. lanceolatum, found that it ended with TAA²⁰⁾, supporting the hypothesis that the NADH1 has an incomplete codon. A comparison of termination codons between species revealed characteristic findings. The cytb of B. belcheri was found to have an incomplete termination codon, while that of B. lanceolatum and B. floridae was found to have a

complete termination codon. The NADH1, NADH4L, and NADH4 of B. belcheri also have a complete one, while those of B. lanceolatum and B. floridae are incomplete. The NADH5 of B. floridae has a termination codon of TAG, while that of B. belcheri and B. lanceolatum has a termination codon of TAA. While the NADH6 of B. lanceolatum has an incomplete termination codon, that of the other species is complete. A complete termination codon of TAG was found in the COI, NADH2, and ATP8 of all Branchiostoma species.

These findings suggest that the initiation and termination codons vary among *Branchiostoma* species, indicating that *B. belcheri*, *B. lanceolatum*, and *B. floridae* are thus distinct from one another.

4. Unassigned DNA

Unassigned DNAs were found in 11 regions including non-coding (NC) sequences in B. belcheri, 9 in B. lanceolatum, and 8 in B. floridae, with sizes of 137, 217, and 154 nt, respectively. The sizes of unassigned DNAs, not including NC sequences in the corresponding species, were 27, 27, and 25 nt, with none significantly different. The difference in size of NC sequences is therefore reflected by a corresponding difference in size of unassigned DNAs. One characteristic finding about unassigned DNAs is that their insertion sites varied among B. belcheri, B. lanceolatum, and B. floridae. If a GTG codon was used as the initiation codon for the NADH1, unassigned DNAs would be inserted into the same 8 regions in B. lanceolatum and B. floridae. The only difference between the two species is that one has unassigned DNAs between the $tRNA^{Y}$ and COI, while the other has them between the $tRNA^{S(TCN)}$ and $tRNA^{D}$. B. belcheri, B. lanceolatum, and B. floridae differed with respect to their insertion sites, sequences, and sizes of their unassigned DNAs located in three regions. The difference in the makeup of unassigned DNAs appears to indicate an inter-species difference. B. lanceolatum and B. floridae exhibited differences in unassigned DNAs in two regions, excluding NC sequences. These unassigned DNAs are located between the $tRNA^{Y}$ and COI, and between the $tRNA^{S(TCN)}$ and $tRNA^{D}$. In particular, unassigned DNAs

in the latter region exhibited inter-species differences not only in sequence but also in size, while also exhibiting intra-species differences in *B. floridae*. These findings suggest that the difference in the composition of unassigned DNAs indicates an interspecies distinction.

The only NC sequence found in the mtDNA of Branchiostoma was located between the NADH5 and tRNA^G, with a size of 110 nt in B. belcheri, 190-192 nt in B. lanceolatum, and 68 nt in B. floridae. This region is remarkably extended in B. lanceolatum compared to the other two species. The GC content in this region is 43% in B. belcheri, 44% in B. lanceolatum, and 40% in B. floridae, and is slightly higher than the GC content in the entire mtDNA (35, 38, and 37%, respectively). The longest NC sequence in the mtDNA of Branchiostoma is 191 nt in length, compared with 198 nt for Petromyzon marinus²², 928 nt for Cyprinus carpio²³⁾, and 1,183 nt for Protopterus dollof²⁴⁾. Upon comparing the NC sequences of various vertebrates, we found no apparent similarity. The degree of similarity in the NC sequence among the Branchiostoma species was also very low. The NC sequence in Branchiostoma is totally unassigned, suggesting that it may be a control region. However, the sequence in this region includes no signals currently known to be involved in mtDNA replication, such as a conserved sequence block (CSB)²⁵⁾ or a termination-associated sequence (TAS)²⁶⁾. A repetitive sequence of 9 nt (TTTTTTGGG) can be found in B. lanceolatum and B. floridae as the only remarkable characteristic of this region, while it is not found in B. belcheri. Although possession of a relatively short genome appears to be an important factor enabling its rapid replication, there is no indication that Branchiostoma requires a quicker replication of mtDNA than do other organisms. However, the fact that the sizes of all tRNA genes, as well as two rRNA genes, are reduced in Branchiostoma suggests that selective pressure is exerted towards a reduction in the size of its mtDNA. The muscle fiber function in Branchiostoma relies mainly on fast muscles, since the movements required for propulsion, e. g., when avoiding danger or capturing food, are mainly produced by the rapid contraction of fast muscles, as

are the movements of flatfish; moreover the muscle fibers of Branchiostoma develop a level of ATPase activity several times that in the muscle fibers of mammals within a short period of time²⁷⁾. It is thus clear that Branchiostoma species also require mtDNA replication. These characteristics of mammals are not apparent in Branchiostoma; they may show different characteristics or no such characteristics at all. Although it is possible that the NC sequence is involved in the initiation of mtDNA replication, the precise mechanism by which the replication of Branchiostoma mtDNA is initiated is unknown. The lack of control regions may be a characteristic of Branchiostoma species, although it is not known whether this lack is related to the reduction in genome size. The present findings still suggest that structural specificity has been determined either by the need to reduce genome size or by the necessity to form control regions of a specific type.

5. Homology

Molecular phylogenetic trees for protein-coding genes, tRNA genes, and rRNA genes have revealed that B. belcheri, B. lanceolatum, and B. floridae examined in the present study are phylogenetically disparate, with differences in the times of divergence among the three species. That time of divergence between B. lanceolatum and B. floridae (200 million years ago) was similar to the one between B. belcheri from the Pacific and B. lanceolatum or B. floridae from the Atlantic (approximately 180 million years ago). The time of divergence between B. floridae and B. lanceolatum was almost the same as that reported by Cañestro et al. (190 million years ago)²⁸⁾. These findings indicate that the three Branchiostoma species diverged at almost the same time but subsequently underwent evolution under different habitats.

5. Conclusion

Having examined the characteristics of different *Branchiostoma* species, we established that *B. belcheri*, *B. lanceolatum*, and *B. floridae* are distinct species.

In addition, we provided a reason for correcting the previously-reported initiation codon for the *NADH1* of *B. floridae* to GTG. The analytical result of present mtDNA involved a new comparative genome analysis of those above three species. *Branchiostoma* have been used in a number of studies, and their molecular biological findings are frequently cited. The findings we obtained should prove very useful for future studies in the fields of phylogenetics, evolutionary biology, and phylogenetic systematics.

6. Acknowledgments

We would like to express our deep gratitude to Dr. Michael Schubert and Prof. Vincent Laudet from the Institut de Génomique Fonctionnelle de Lyon (IGFL), and to Dr. Linda Holland and Prof. Nicholas Holland from the Scripps Institution of Oceanography, University of California-San Diego, for their cooperation in collecting the *Branchiostoma* samples used in this study.

References

- Yasui K and Kubokawa K: Anatomy. Biology of Cephalochordate Lancelet. 30-83, University of Tokyo Press, Tokyo, (2005)
- Pallas PS: Limax lanceolatus. Descriptio Limacis lanseolaris. Spicilegia Zoologica, quibus novae imprimus et obscurae animalium species iconibus, descriptionibus. 10. 19, Gottl. August. Lange., Berline, (1774)
- 3) Cameron CB, Garey JR and Swalla BJ: Evolution of the chordate body plan: New insights from phylogenetic analyses of deuterostome phyla. Proc. Natl. Acad. Sci. USA., 97: 4469-4474, 2000
- 4) Winchell CJ, Sullivan J, Cameron CB, Swalla BJ and Mallatt J: Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Mol. Biol. Evol., 19: 762-776, 2002
- 5) Nicholas HP, Thomas B, David EKF, et al: The amphioxus genome and the evolution of the chordate karyotype. Nature, 453: 1064-1071, 2008
- 6) Takada MY, Mukaida M and Imai T: Molecular evolution of mitochondrial DNA of *Branchiostoma belicheri*. J. Anal. Bio-Sci., 27: 291-302, 2004
- 7) Spruyt N, Delarbe C, Gachelin G and Laudet V: Complete sequence of the amphioxus (*Branchiostoma lanceolatum*) mitochondrial genome: relations to vertebrates. Nucleic Acids Res., 26: 3279-3285, 1998
- 8) Boore JL, Daehler LL and Brown WM: Complete

sequence, gene arrangement, and genetic code of mitochondrial DNA of the cephalochordate *Branchiostoma floridae* (Amphioxus). Mol. Biol. Evol., 16: 410-418, 1999

- 9) Nohara M, Nishida M and Nishikawa T: New complete mitochondrial DNA sequence of the lancelet *Branchiostoma lanceolatum* (Cephalochordata) and the identity of this species' sequences. Zool. Sci., 22: 671-674, 2005
- Lowe TM and Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25: 955-964, 1997
- Thompson JD, Higgins DG and Gibson TJ: CLUSTAL
 W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680, 1994
- Kimura M: A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111-120, 1980
- Saitou N and Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425, 1987
- Perriére G and Gouy M: WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie, 78: 364-369, 1996
- 15) Delarbre C, Escriva H, Gallut,C, Barriel V, Kourilsky P, Janvier P, Laudet V and Gachelin G: The complete nucleotide sequence of the mitochondrial DNA of the agnathan *Lampetra fluviatilis*: bearings on the phylogeny of cyclostomes. Mol. Biol. Evol., 17: 519-529, 2000
- Student: The probable error of a mean, Biometrika, 6: 1-25, 1908
- Sueoka N: Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA., 85: 2653-2657, 1988
- 18) Ikehara K: Origins of gene, genetic code, protein and life (Comprehensive view of life systems from the GNC-SNS primitive genetic code hypothesis). Viva Origino, 29: 66-85, 2001
- Wolstenholme DR: Animal mitochondrial DNA structure and evolution. Int. Rev. Cytol., 141: 173-216, 1992
- 20) Delarbre C, Barriel V, Tillier S, Janvier P and Gachelin G: The main features of the craniate mitochondrial DNA between the ND1 and the COI genes were established in the common ancestor with the lancelet. Mol. Bio. Evol., 14: 807-813, 1997

- Fearnley IM and Walker JE: Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. EMBO J., 5: 2003-2008, 1986
- 22) Lee WJ, and Kocher TD: Complete sequence of a sea lamprey (*Petromyzon marinus*) mitochondrial genome: early establishment of the vertebrate genome organization. Genetics, 139: 873-887, 1995
- 23) Chang YS, Huang FL and Lo TB: The complete nucleotide sequence and gene organization of carp (*Cyprinus carpio*) mitochondrial genome. J. Mol. Evol., 38: 138-155, 1994
- 24) Zardoya R and Meyer A: The complete nucleotide sequence of the mitochondrial genome of the lungfish (*Protopterus dolloi*) supports its phylogenetic position as a close relative of land vertebrates. Genetics, 142: 1249-1263, 1996
- 25) Doda JN, Wright CT and Clayton DA: Elongation of

displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences. Proc. Natl. Acad. Sci. USA., 78: 6116-6120, 1981

- 26) Chang DD and Clayton DA: Priming of human mitochondrial DNA replication occurs at the lightstrand promoter. Proc. Natl. Acad. Sci. USA., 82: 351-355, 1985
- 27) Takada Y, Mukaida M and Imai T: A histochemical evaluation of myofibrillar ATPase activity in the Branchiostoma somatic muscle. J. Anal. Bio-Sci., 31: 147-154, 2008
- 28) Cañestro C, Albalat R, Hjelmqvist L, Godoy L, Jörnvall H and González-Duarte R: Ascidian and amphioxus Adh genes correlate functional and molecular features of the ADH family expansion during vertebrate evolution. J. Mol. Evol., 54: 81-89, 2002