〈特集:新しいテクノロジー・イムノアッセイ〉

マイクロフリュイディスク技術を用いた 全自動免疫蛍光測定装置ミュータスワコーi30

横山 和則¹⁾、黒澤 竜雄¹⁾、渡辺 光雄²⁾

Development of a fully-automated microfluidic immunoassay system " μ TAS Wako i30" Utilizing disposable microchips

Kazunori Yokoyama¹⁾, Tatsuo Kurosawa¹⁾ and Mitsuo Watanabe²⁾

Summary Applications of the micro Total Analysis System (μ TAS) have been evolving over the last 20 years, including in the field of clinical diagnostics, in expectation of totally miniaturized system providing a reduction of reagent/sample consumption, a shortening of reaction time, and other microfluidics benefits. We have developed such a fully automated immunoassay system by employing the LBA-EATA method which utilizes isotachophoresis (ITP) followed by capillary gel electrophoresis (CGE) in microfluidic channels, allowing sandwich immuno-complex formation and detection of the complex by Laser-Induced Fluorescence (LIF). By incorporating L. culinaris agglutinin (LCA) lectin in the CGE buffer, the LCA reactive isoform of AFP (AFP-L3), which is specifically produced by hepatocellular carcinoma (HCC) cells, can be separated from non-LCA reactive AFP-L1 and measured. AFP-L3% can be calculated as a ratio of AFP-L3 / total AFP (AFP-L1+AFP-L3) concentrations. The resulting AFP-L3% assay exhibited effective assay performance, including high detection sensitivity, high within-run reproducibility and low instrument-to-instrument variation.

Key words: Micro Total Analysis System (µ TAS), AFP-L3, Immunoassay

I.緒言

近年、分析に必要な混合・撹拌・洗浄・分 離・検出等の操作を数cmほどのチップ上で行う

〒661-0963 兵庫県尼崎市高田町6番1号

部 臨床検査薬研究所

查薬開発部

μ TAS (micro Total Analysis System) 技術が開 発され、DNAやRNAをはじめ蛋白質を分離・分 析するシステムが研究されている。この技術 は、サンプルや試薬の微量化、反応時間の短

1和光純薬工業株式会社 臨床検査薬事業部 開発本 ¹⁾Diagnostics Research Laboratories, Wako Pure Chemical Industries, Ltd. 6-1 Takada-cho, Amagasaki, Hyogo 661-0963, Japan 2和光純薬工業株式会社 臨床検査薬事業部 臨床検 ²⁾New Diagnostic Business & Technology Development Department, Diagnostic Division,

〒540-8605 大阪府中央区道修町3丁目1番2号

1-2 Doshomachi 3-chome, Chuo-ku, Osaka 540-8605, Japan

縮、装置の小型化が目論めることから、各分野 に応用が期待されている^{1,3)}。

一方、臨床検査の分野においては、来院され る患者様の利便性を考え、来院当日に検査結果 を報告すること、ドクターの治療方法判断を早 めるために診療前検査・緊急検査が望まれてい る。そこで、POCTや迅速検査の必要性が増し、 ベッドサイド等で測定できる小型装置の開発が 進んでいる。

免疫測定方法は、これまでサンドイッチイム ノアッセイを基本として、一般に測定対象物質 に特異的に結合する物質(抗体、抗原等)をビ ーズ等の粒子に固相化し、測定物質を固相で採 取した後に、測定対象物に結合する物質に酵素、 蛍光等を標識した物質をさらに反応させ、標識 物質のシグナルを検出する固相法が主流となっ ている。固相法の利点は感度が高いこと、自動 化が容易であったことから、現在最も汎用的な 測定方法として知られている。しかしながら、 B/F分離のための洗浄ステップが必要で煩雑な操 作が多く、固相と液相の不連続な界面での反応 であることから、反応時間を要する、検量線が 一次式にならないので、複雑な解析プログラム が必要である等の問題点があった(図1)。ま た、固相への非特異吸着に起因する問題(偽陽 性など)等もあることが知られている。これま で我々は、Liquid-phase Binding Assay (LBA法) という抗原抗体反応を液相系で行い、免疫反応 物をイオン交換カラムで分離する方法を開発し、 自動分析装置LiBASysを商品化した。更なる性 能の向上を目指して、イオン交換カラムではな く液相中で免疫反応物を分離するために、マイ クロチップ上でのCapillary Gel Electrophoresis (CGE)に注目した。

マイクロチップを用いた免疫反応法は、現在 まで多数報告されているが、腫瘍マーカーのよ うな高感度測定を実現したシステムはなかった。 最近、我々はDNAで標識した抗体 (DNA抗体) を流路内で等速電気泳動 (Isotachophoresis: ITP) し、DNA抗体と抗原および蛍光標識抗体を反応 させ、複合体を流路内で移動させながら濃縮と B/F分離を行い、その後のCGEで免疫複合体を 分離してレーザー誘起蛍光法(Laser-Induced Fluorescence:LIF) で測定する方法(LBA-EATA法: Liquid-phase Binding Assay and Electokinetic Analyte Transport Assay) を構築し た
う。我々は、この測定法を原理とした全自動
蛍 光免疫測定装置ミュータスワコーi30を開発し た。。本システムは、卓上型のランダムアクセス 可能な小型免疫測定装置であり、測定時間9分 という迅速測定を可能とした。本稿では、本シ ステムと本システム用に開発したミュータスワ コーAFP-L3の測定性能について報告する。

Ⅱ.方法と材料

1. ミュータスワコー i30

ミュータスワコーi30は、本体520mm (W) ×
 595mm (D) × 546mm (H) のコンパクトサイズで、検体の分注から電気泳動、測定値の算出

図1 液相法と固相法の比較

図2 ミュータスワコーi30

キャピラリーゲル電気泳動でのAFP-L1とAFP-L3の分画

までを全自動で行う(図2)。

本装置では、各測定工程を①チップ装填部、 ②試薬・検体分注部、③微細流路への試薬の圧 力充填部、④電気泳動・LIF検出部、⑤チップ 廃棄部に分けてライン状に最適配置している (図3)。マイクロチップは、チップ20個入りの カセットからチップ搬送台に自動的に供給され る。チップ搬送台は30℃に温度設定されており、 密着させたチップ内の微細流路内温度を30℃に 保持している。装置には、チップ20枚入りカセ ットを4個、最大80枚のチップが設置できる。 試薬・検体の分注は、1本のプローブで行う。 そこで、プローブによるキャリーオーバーを防 ぐために、アルカリ性の洗浄液と精製水による プローブ洗浄を行っている。圧力充填部では、 試薬/検体ウエルに圧力を加え、ウエル内の試薬 と抗原+蛍光標識抗体を微細流路に充填する。

電気泳動直前には、廃液ウエルを陰圧にして、 チップ流路内に分注した各試薬と検体が各々接 している界面を整える。電気泳動用電極は、3 本のピン形状で試薬ウエル内の電気泳動用試薬 に接するよう挿入される。電気泳動では、ITP 時2k~4kV、CGE時1k~1.5kVの高電圧をか ける。ITPによる微細流路内の電気伝導度分布の 変化を連続的にモニターし、一定のシグナルが 得られた時点で自動的にITPからCGEの切替えを 行う"。光学系は、微細流路の終端で蛍光を測定 できるように配置されている。CGE時にレーザ 一照射し、電気泳動により流路内を通過する蛍 光を連続的に検出する。また、CGE流路のバッ ファー中にLCA(レンズマメレクチン)を添加 することにより、親和性電気泳動を行うことが でき、肝細胞癌マーカーであるAFP-L3を測定す ることができる(図4)。さらに、試薬には免

図5A マイクロチップ

図5B マイクロチップのウエルと流路の説明
 ■■は、ITPゾーン。このゾーンには、陰極の泳動緩衝液、DNA標識抗体、混合液等の泳動緩衝液が分注される。●●は、CEゾーンで陽極の泳動緩衝液(または、LCA添加泳動緩衝液)が分注される。---は、Focus 用の蛍光試液が分注される。

図6 試薬ボトルとキャリブレーター・コントロール

疫複合体ピークを同定するために免疫複合体ピ ーク(AFP-L1とAFP-L3)の前後に泳動される 内部標準ピーク(マーカー)を添加している。

ピーク解析では、得られた電気泳動像から、 はじめに内部標準ピークを同定し、その結果か らターゲットとする免疫複合体の検出位置を補 正したのち、免疫複合体ピークの同定を行う。 内部標準を使用したピーク同定方法により、電 気泳動に若干のズレが発生した場合でもピーク の同定が可能となり測定の安定性に貢献してい る。次に、免疫複合体ピークの面積を算出し、 予め測定したキャリブレーターのピーク面積か ら検体の測定値を算出する。

2. マイクロチップ

マイクロチップ(図5A)は、ポリメタクリ ル酸メチル(PMMA)樹脂を射出成型で微細流 路付き基板にし、その流路面をフィルムで封止 して作製した。本チップは、1測定/チップのデ ィスポーサブルチップである。チップには、7 つの試薬/検体用ウエル、5つの廃液用ウエル、 1つの試薬/検体混合用ウエルがあり、光学位置

図7 最小検出感度 0.2ng/mLと0.3ng/mLが重ならないことから 最小検出感度を0.3ng/mLとした。

調整用と測定用の2系統の微細流路が配置され ている(図5B)。試薬/検体用ウエルと廃液用ウ エルは微細流路で接続され、試薬/検体用ウエル 側を加圧して流路内を試薬/検体で満たす。オー バーフローした試薬は廃液用ウエルにたまる構 造となっている。微細流路のデザインは、試薬 や検体を正確に圧力導入できるように最適化さ れている。精密射出成型技術によりチップ間の 寸法差も最小となるようにコントロールされて おり、良好な測定再現性に寄与している。

3. ミュータスワコー測定試薬

試薬は、7種の電気泳動用試薬を一体型試薬 ボトルに100回分充填・密封している。ボトル側 面のRF-ICタグには、項目情報や分析条件はも とより開封日時や使用回数を記録し個々の試薬 の管理に使用している。キャリブレーター・コ ントロールも用意している(図6)。

4. 検体

① キャリブレーターには、ミュータスワコー AFP-L3用キャリブレーターセットを用いた。

② 最小検出感度評価用の検体は、リン酸緩衝 液をベースに一定濃度(0, 0.1, 0.2, 0.3, 0.4 ng/mL)のAFP-L1を添加して作製した。 ③ 試薬の再現性評価用の検体は、プール血清 を用いた。

④ 装置間差は、4台で確認した。検体には、
 ミュータスワコーAFP-L3用コントロールL、コントロールHを用いた。

Ⅲ. 結果

 0.3 ng/mLの±2SDのエラーバーからもわか るように、AFP濃度低値でも非常に再現性良く 測定でき、また、0.2 ng/mL、0.3 ng/mLのエラー バーがともに重ならないことから、0.3 ng/mLを 最小検出感度とした(図7)。

2. 試薬の再現性は、総AFP濃度2-924.5 ng/mL の間で、再現性0.5-5.0%と良好であった。 L3%についても、L3%9-80%の間で再現性が 0.3-2.7%と良好であった(表1A)。

表1A 再現性

	検体I	検体Ⅱ		検体Ⅲ		検体Ⅳ		検体V	
	AFP (ng/mL)	AFP (ng/mL)	AFP-L3 (%)						
1	2.1	19.6	9.2	121.0	49.9	380.3	76.0	920.4	48.4
2	2.0	20.2	9.4	123.4	49.9	383.9	75.4	925.6	48.2
3	2.1	19.8	9.9	119.4	50.2	376.7	75.4	919.0	48.4
4	1.9	19.9	9.5	122.5	50.6	378.7	76.0	930.1	48.5
5	1.9	20.1	9.4	123.5	51.3	375.3	75.6	927.3	48.6
平均	2	19.92	9.48	121.96	50.38	378.98	75.68	924.48	48.42
再現性(CV) 5.0%	1.2%	2.7%	1.4%	1.2%	0.9%	0.4%	0.5%	0.3%

表1B 装置間差

	装置1		装置	2	装置3 装置		4	
	AFP (ng/mL)	AFP-L3 (%)						
1	47.9	31.4%	50.5	30.8%	51.5	30.6%	50.0	30.3%
2	48.6	31.3%	50.3	30.3%	51.2	30.5%	50.3	30.2%
3	48.9	31.1%	50.7	30.9%	50.4	29.9%	50.5	30.1%
平均	48.5	31.3%	50.5	30.7%	51.0	30.3%	50.3	30.2%
再現性 (CV)	1.1%	0.6%	0.4%	1.0%	1.1%	1.3%	0.5%	0.3%

	装置1		装置2 装置		3	装置 4		
	AFP (ng/mL)	AFP-L3 (%)	AFP (ng/mL)	AFP-L3 (%)	AFP (ng/mL)	AFP-L3 (%)	AFP (ng/mL)	AFP-L3 (%)
1	198.5	21.7%	208.3	22.1%	208.4	22.1%	197.8	21.0%
2	201.3	22.0%	208.7	22.0%	205.8	22.0%	199.0	21.0%
3	198.8	22.1%	208.2	22.1%	210.2	21.8%	195.7	21.2%
平均	199.5	21.9%	208.4	22.1%	208.1	22.0%	197.5	21.1%
再現性 (CV)	0.8%	0.9%	0.1%	0.5%	1.1%	0.9%	0.8%	0.5%
	10401 - 2.1 -	**/±====						

検体は、コントロールを使用した。

装置間差	コントロ	コールL	コントロールH			
	AFP (ng/mL)	AFP-L3 (%)	AFP (ng/mL)	AFP-L3 (%)		
mean	50.1	30.6%	203.4	21.8%		
SD	1.1	0.005	5.3	0.004		
CV	2.1%	1.6%	2.6%	2.0%		
max	51.5	31.4%	210.2	22.5%		
min	47.9	29.9%	195.7	21.0%		
range	3.6	1.5%	14.5	1.5%		

3. 装置間差は、CV2%程度で、試薬再現性の範 囲内であり、問題ないと考えた(表1B)。

Ⅳ. 考察

今回、開発した装置では、マイクロチップの セットをはじめ、試薬・サンプルの分注、微細 流路への試薬の導入、ITPとCGEの電気泳動、測 光、波形解析、測定値算出までを全自動化した。 これまでの µTAS技術では、サンプルや試薬の 微量化、反応時間の短縮、装置の小型化が目論 める反面、微細流路内での測定に供されるサン プル量自体が極微量であるため、腫瘍マーカー のように高感度測定が必要とされる分野で実用 化された例は無かった。我々は今回、 u TAS技 術に独自のLBA-EATA法を組み合わせることに より、標識抗体と抗原との免疫複合体を高度に 濃縮させながら反応させ、再現性よく分離分析 する技術を確立した。これによりAFPとAFP-L3%の測定感度、再現性ともに非常に良好なシ ステムを実現した。また、免疫複合体の形成反 応とB/F分離を液相中で同時に進行させるため、 従来の固相法で必要であった洗浄ステップを省 くことを可能とし、測定時間は約9分、サンプ ル処理能力は約25サンプル/時間の迅速測定を可 能とした。洗浄ステップが不要となったことで、 装置構造を簡略化でき、装置サイズを卓上型に 抑えることに大きく寄与できたと考えている。 現在、AFPとAFP-L3%の同時測定以外にも、 肝細胞癌の腫瘍マーカーPIVKAⅡの測定が可能 である。他の測定項目への適応も可能であり、 今後の測定項目の拡大が期待される。特に、迅 速で精度の高い測定結果を臨床に報告すること が本装置を用いることで可能であり、感染症分 野や心疾患領域での展開が考えうる。

V. 結語

本システムは、小型、迅速、高感度であり、 診療前診断や緊急検査に有用であると考えてい る。 また、本システムはAFP-L3測定で示したよう に今までのシステムとは異なり測定対象物の濃 度(量)だけではなく、糖鎖の違いなど測定対 象物の質も分析可能なシステムを有する装置で ある。糖鎖解析は、ポストゲノム研究後のター ゲットとして注目されており、癌化した細胞が 生産するタンパク質の糖鎖が変化することはよ く知られており、臨床検査においても将来重要 となってくると考えられる。さらに、本システ ムが用いている分離分析システムは、DNAの解 析も可能であり、本システムにより、診療に新 たな流れを作り出すことが期待できる。

文献

- Koutny LB, Schmalzing D, Taylor TA, et al.: Microchip electrophoretic immunoassay for serum cortisol. Anal Chem, 68: 18-22, 1996.
- Chiem N, Harrison DJ: Microchip-based capillary electrophoresis for immunoassays: analysis of monoclonal antibodies and theophylline. Anal Chem, 69: 373-378, 1997.
- 3) Reyes DR, Iossifidis D, Auroux PA, et al.: Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem, 74: 2623-2636, 2002.
- 4) Sato K, Tokeshi M, Odake T, et al.: Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip. Anal Chem, 72: 1144-47, 2000.
- Kawabata T, Wada HG, Watanabe M, et al.: "Electrokinetic Analyte Transport Assay" for alpha-Fetoprotein immunoassay integrates mixing, reaction and separation on-chip. Electrophoresis, 29: 1399-1406, 2008.
- 6) Kagebayashi C, Yamaguchi I, Akinaga A, et al.: Automated immunoassay system for AFP-L3% using on-chip electrokinetic reaction and separation by affinity electrophoresis. Anal Biochem, 388: 306-311, 2009.
- 7) Park C, Kazakova I, Kawabata T, et al.: Controlling data quality and reproducibility of a high-sensitivity immunoassay using isotachophoresis in a microchip. Anal Chem, 80: 808-814, 2008.
- 8) 山口 勲: マイクロチップ電気泳動を用いたイム ノアッセイ. Medical Technology, 10: 1089-1094, 2009.